Large Language Model (LLM) Training
Overview
Large Language Models (LLMs) are transformer-based neural networks trained on massive text corpora to understand and generate human-like text. Modern LLMs range from 7B to over 1T parameters.
Training Pipeline
1. Data Collection & Preprocessing
Modern Data Pipeline:
1. Web scraping (Common Crawl, Reddit, etc.)
2. Quality filtering (CCNet, Gopher rules)
3. Deduplication (MinHash, SimHash)
4. Toxicity filtering (Perspective API)
5. Multi-lingual processing
2. Tokenization
- Modern Tokenizers: SentencePiece, Tiktoken
- Vocabulary Sizes: 32K-256K tokens
- Special Tokens: BOS, EOS, padding, mask tokens
3. Pre-training
import torch
import torch.nn as nn
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import load_dataset
import os
# Configuration
model_name = "microsoft/DialoGPT-small"
output_dir = "./llm-training-output"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token # Set pad token
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Load and prepare dataset
dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
def tokenize_function(examples):
return tokenizer(
examples["text"],
truncation=True,
padding=False,
max_length=512,
return_tensors=None
)
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
remove_columns=dataset["train"].column_names
)
# Data collator for language modeling
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False, # Causal language modeling
return_tensors="pt"
)
# Training arguments
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
num_train_epochs=3,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=500,
learning_rate=5e-5,
weight_decay=0.01,
logging_steps=100,
eval_steps=500,
save_steps=1000,
evaluation_strategy="steps",
save_strategy="steps",
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
fp16=True, # Mixed precision training
dataloader_pin_memory=False,
report_to=None # Disable wandb/tensorboard if not needed
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
)
# Start training
print("Starting training...")
trainer.train()
# Save the final model
trainer.save_model()
tokenizer.save_pretrained(output_dir)
print(f"Training completed. Model saved to {output_dir}")
# Example inference
def generate_text(prompt, max_length=100):
inputs = tokenizer.encode(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Test the trained model
test_prompt = "The future of artificial intelligence"
generated_text = generate_text(test_prompt)
print(f"Generated: {generated_text}")
Key Components Explained:
- Model Loading: Using pre-trained models from Hugging Face
- Data Preparation: Tokenization and dataset formatting
- Training Configuration: Modern training parameters with mixed precision
- Training Loop: Using Hugging Face Trainer for efficient training
- Evaluation: Built-in evaluation during training
- Inference: Text generation with the trained model
Modern Training Features:
- Mixed precision (FP16) for memory efficiency
- Gradient accumulation for effective batch size
- Warmup steps for stable training
- Automatic evaluation and checkpointing
- Device mapping for multi-GPU training
4. Instruction Tuning
- Supervised Fine-Tuning (SFT): High-quality instruction datasets
- Datasets: Alpaca, Dolly, OpenAssistant, ShareGPT
- Format: System/User/Assistant message structure
5. Alignment & Safety
- RLHF: Reinforcement Learning from Human Feedback
- DPO: Direct Preference Optimization (modern alternative)
- Constitutional AI: Anthropic’s safety-first approach
- RLAIF: Reinforcement Learning from AI Feedback
Modern Training Techniques
1. Efficient Training
- FlashAttention: Memory-efficient attention
- Mixed Precision: BF16/FP16 training
- Gradient Checkpointing: Memory vs computation trade-off
- Model Parallelism: Tensor, pipeline, sequence parallelism
2. Optimization Advances
- AdamW: Weight decay separated from gradient updates
- Lion: New optimizer with better convergence
- Cosine Annealing: Smooth learning rate decay
- Gradient Accumulation: Effective large batch training
3. Hardware Considerations
- GPUs: H100, A100, L40S for training
- Memory: NVLink for multi-GPU communication
- Storage: High-throughput distributed file systems
- Networking: InfiniBand for multi-node training
Evaluation & Benchmarks
1. Core Capabilities
- MMLU: Massive Multitask Language Understanding
- GSM8K: Grade school math reasoning
- HumanEval: Code generation
- HellaSwag: Commonsense reasoning
2. Safety & Alignment
- TruthfulQA: Truthfulness evaluation
- ToxiGen: Toxicity detection
- BBQ: Bias evaluation
Modern Training Frameworks
1. Open Source Options
- Transformers (Hugging Face): Model library and training
- Axolotl: Streamlined fine-tuning framework
- LLaMA-Factory: Easy fine-tuning interface
- DeepSpeed: Microsoft’s optimization library
- Megatron-LM: NVIDIA’s large-scale training framework
2. Commercial Platforms
- AWS SageMaker: Managed training service
- Google Vertex AI: GCP’s ML platform
- Azure ML: Microsoft’s cloud ML service
Resources
1. Key Papers
- Attention Is All You Need: Original transformer paper
- LLaMA: Open and Efficient Foundation Language Models: Meta’s efficient LLM architecture
- Training Language Models to Follow Instructions: InstructGPT/RLHF paper
- Direct Preference Optimization: DPO method for alignment
2. Frameworks & Libraries
- Hugging Face Transformers: Model library and training
- Axolotl: Streamlined fine-tuning framework
- DeepSpeed: Optimization library for large models
- Megatron-LM: Large-scale training framework
3. Datasets
- The Pile: Large-scale diverse text dataset
- C4: Colossal Clean Crawled Corpus
- RedPajama: Open reproduction of LLaMA training data
- Alpaca: Instruction-following dataset
4. Tools & Platforms
- Weights & Biases: Experiment tracking and visualization
- MLflow: Machine learning lifecycle platform
- Hugging Face Hub: Model repository and sharing
- OpenAI Evals: Evaluation framework for LLMs
5. Learning Resources
- Hugging Face Course: Free NLP and transformers course
- Stanford CS324: Large Language Models course
- LLM University: Cohere’s LLM learning platform
- Papers with Code: Latest research papers with implementations